Effects of Wet Air and Synthetic Combustion Gas Atmospheres on the Oxidation Behavior of Mo-Si-B Alloys

Matthew J. Kramer, Andrew J. Thom, Pranab Mandal, Vikas Behrani, and Mufit Akinc

> Ames Laboratory and Department of Materials Science and Engineering Iowa State University, Ames, IA

17th Annual Conference on Fossil Energy Materials
Baltimore, MD
April 22-24, 2003

Ames Laboratory is operated for the U.S. Dept. of Energy (DOE) by Iowa State University under contract No. W-7405-ENG-82. This work was conducted with the support of the U.S. Department of Energy (DOE) National Energy Technology Laboratory under Contract No. AL-00-360-011.

Mo-Si-B Intermetallic System

- T1-containing assemblages (1) & (2)
 - Excellent oxidation resistance and creep strength
 - **Low fracture toughness**
- Mo-containing assemblage (3)
 - **Improved fracture toughness**
 - Reduced oxidation resistance
- Processible by:
 - Casting, sintering, plasma spraying
- Electrically conductive

Multiphase composites can meet several of the Vision 21 Goals, but additional research is needed to develop optimum alloy meeting all of the goals

Isothermal Oxidation at 1600°C in Dry Air

Looking to the Future: Vision 21 Goals to Develop New High Temperature Materials

- Turbine Components
 - Target FY08
 - > 1000 hrs. 3000°F (1650°C)
 - > Corrosive environment
- Heat Exchangers
 - Target FY04
 - > Alloy-tube

1000 hrs. 2300°F (1260°C)

> Ceramic-tube

1000 hrs. 3000°F (1650°C)

- Mo-Si-B Alloys
 - > T1-based alloys stable for 240 hrs at 2900°F (1600°C) in dry air
 - **Effect of combustion gases?**
 - **Enhance fracture toughness?**
 - **➤** Fatigue tolerant?

Project Objectives

- Near Term
 - > Mo-Si-B
 - > T1-based alloys now meet temperature criteria for heat exchangers

Issues to be addressed:

- Fabrication
- Corrosion
- Improvements with minor alloy additions

Future

- > Derivative Mo-Si-B alloys
- > T1-based alloys now meet creep resistance and temperature criteria for turbine applications

Issues to be addressed:

- Near-net shape processing
- Low fracture toughness
- Long term oxidation resistance
- Cyclic oxidation resistance

Alloy Compositions Tested

- Commercially procured, pre-alloyed powders
- Sintered at 1800°-1900°C in Ar atmosphere to > 95% density

	Wt %			Phase Fraction (Vol %)					
Alloy	Mo	Si	В	T1	MoB	MoSi ₂	T2	Mo ₃ Si	Mo
1	84.0	13.4	2.6	66	22	12			
2	88.6	9.9	1.5	45			31	24	
3	94.6	4.3	1.1				30	27	43

Typical Microstructures

Alloy 1 Alloy 2 Alloy 3

Results and Discussion Outline

- Review of alloy oxidation in dry and wet air $(150 \text{ Torr } H_2O)$
- Isothermal oxidation in dry air to 1600°C and wet air to 1000°C
- Effect of pre-oxidation on scale formation of Alloy 3
- Effect of synthetic oxidizing combustion gas mixture N_2 13 CO_2 $10H_2O$ $4O_2$ at 1000° and $1100^\circ C$

Isothermal Measurements in Wet/Corrosive Gases

- Requires use of purge and reactive gases to achieve gas separation and protect balance mechanism
- Condensation of MoO₃
 onto hangdown can occur in Alloy 3
- Used pre-oxidation in tube furnace to induce initial mass loss

Oxidation in Dry Air at 1100°C

Oxidation in Wet Air at 1100°C

Scale Formation Reactions

• T1 phase (Alloy 1 and Alloy 2):

$$\begin{split} Mo_5Si_3B + (x+15/4) &O_2 \rightarrow (5-x) \ Mo + x \ MoO_2 + 3 \ SiO_2 + 1/2 B_2O_3 \\ Mo_5Si_3B + 2(x+15/4) &H_2O \rightarrow (5-x) \ Mo + x \ MoO_2 + 3 \ SiO_2 \\ &+ 1/2 \ B_2O_3 + 2(x+15/4) \ H_2 \\ SiO_2(s) + 2H_2O(g) = Si(OH)_4(g) \\ borosilicate glass \sim 14 \ at\% \ B_2O_3 \end{split}$$

• T2 phase (Alloy 2 and Alloy 3):

Enhanced Interlayer Growth (Alloy 2 as example)

Dry Air Wet Air

AMES LABORATORY

- Interlayer appears as fine, eutectic-like Mo-rich phase dispersed in a thin, continuous matrix of darker silica; larger grains of MoO₂ are detectable
- Insufficient spatial resolution for EDS to determine if eutectic-like areas correspond to Mo or MoO₂

Why Isothermal Oxidation Measurements?

AMES LABORATORY

Isothermal Oxidation of Alloy 1

Isothermal Oxidation of Alloy 2

Isothermal Oxidation of Alloy 3 in Dry Air

Pre-Oxidation Effect on Alloy 3 Scale Formation

AMES LABORATORY

Alloy 3 Pre-Oxidation and Scale Formation

4 hrs Pre-Ox in Dry Air

Oxidation of Alloy 3 in Wet Air at 1000°C

Scale Evolution During Alloy 3

Oxidation

0006 1000 - Ale As 10 um 1005

8 hrs Dry Air, 100 hrs Wet Air

200 hrs Dry Air

Synthetic Combustion Gas Exposure at 1000°C

AMES LABORATORY

Synthetic Combustion Gas Exposure at 1100°C

Effect of Combustion Gas Exposure

Summary

- Dry Air
 - All alloys show protective silica scale
 - T up to 1600 C
- Wet Air
 - Alloys 1 & 2 protective silica scale
 - Thicker than dry air
 - Alloy 3, highly variable
 - Due to overall low Si content
 - Size and distribution of metal phase
- Combustion Gas
 - Alloys 1 & 2 mixed results
 - Better with higher T
 - Viscosity?
 - Alloy 3
 - Pretreatment or protective coatings may be necessary
- Stability of the Scale
 - Source and amount of Si
 - Rate of MoO₂ formation
 - Rate of MoO₃ transportation

Comparison of Nb-Si-B and Mo-Si-B Phase Diagrams

EPMA Analysis of Oxide Scale of Nb-Mo-Si-B Alloy

Future Work

Oxidation

- Cyclic testing: scale adherence
- Selected testing in synthetic oxidizing combustion atmosphere to 1500°C
- Consider alloying strategies to improve Alloy 3 oxidation at higher temps

Advanced processing techniques

- Injection molding: test bars (3 x 4 x 25 mm), example components
- Plasma spraying: Alloy 1/2 coating on Alloy 3 substrates for oxidation testing

Develop Nb-Mo-Si-B compositions

- Coexistence of (Nb,Mo) with oxidation resistant quaternary silicide
- Processing strategies to selectively remove Nb from surface

